

Recurring

[image: Build Status]
 [https://travis-ci.org/jdodds/recurring][image: Coverage Status]
 [https://coveralls.io/github/jdodds/recurring?branch=master][image: Documentation Status]
 [https://recurring.readthedocs.io/en/latest/?badge=latest]This is a simple library for running a function or callable every N seconds. It’s meant for applications that need to schedule small, self-contined callable(s) on a relatively long, potentially changing period . alive-checks, state snapshots, that sort of thing.

Use this if:

	You want to call something periodically over the lifetime of your application.

	You want to be able to change the time between calls.

	You want or need to avoid the overhead of joining and starting a thread every time. (up to 1/5 of a second according to my sample-size of one machine under no other load)

	The stuff you’re going to call isn’t going to destroy machines if it’s killed abruptly at the end of the application’s life.

This is probably not appropriate for your project if:

	You’re already using or likely will be using a fleshed-out concurrency framework.

	You have many things you’d like to repeatedly schedule and run.

	Your callables absolutely must execute some cleanup code to avoid disaster on kill.

This is not a library intended for top-level program composition.

Installation:

pip install recurring

Usage:

import recurring

def stuff():
 # do stuff ...

seconds_between_stuff = 30

job = recurring.job(stuff, seconds_between_stuff)
job.start()

...

seconds_between_stuff = 300000000 # this will be *from when rate is set*, not *from the next scheduled call*
job.rate = seconds_between_stuff

...

stop making calls until start() is called again
job.stop()

some time later
job.start()

stop making calls permanently
job.terminate()
job.start() # raises RuntimeError
job.rate = 3000 # raises RuntimeError

Changelog

2.0.0 - 2018-05-30

	replaced sched backend with threading.Timer-like implementation, saving us from needing to respawn when a job’s rate is changed.

	jobs can now be permanently stopped by calling job.terminate()

Backwards-Incompatible Changes

	job.stop() no longer takes an optional timeout argument

1.0.1 - 2018-05-24

	Corrected an assumption about the number of events that could be queued at once.

1.0.0 - 2018-05-22

	Initial release

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 r

 		 	

 		
 r	

 	
 	
 recurring	

Index

 J
 | R
 | S
 | T

J

 	
 	job (class in recurring)

R

 	
 	rate (recurring.job attribute)

 	
 	recurring (module)

S

 	
 	start() (recurring.job method)

 	
 	stop() (recurring.job method)

T

 	
 	terminate() (recurring.job method)

2.0.0 - 2018-05-30

	replaced sched backend with threading.Timer-like implementation, saving us from needing to respawn when a job’s rate is changed.

	jobs can now be permanently stopped by calling job.terminate()

Backwards-Incompatible Changes

	job.stop() no longer takes an optional timeout argument

1.0.1 - 2018-05-24

	Corrected an assumption about the number of events that could be queued at once.

1.0.0 - 2018-05-22

	Initial release

Recurring

[image: Build Status]
 [https://travis-ci.org/jdodds/recurring][image: Coverage Status]
 [https://coveralls.io/github/jdodds/recurring?branch=master][image: Documentation Status]
 [https://recurring.readthedocs.io/en/latest/?badge=latest]This is a simple library for running a function or callable every N seconds. It’s meant for applications that need to schedule small, self-contined callable(s) on a relatively long, potentially changing period . alive-checks, state snapshots, that sort of thing.

Use this if:

	You want to call something periodically over the lifetime of your application.

	You want to be able to change the time between calls.

	You want or need to avoid the overhead of joining and starting a thread every time. (up to 1/5 of a second according to my sample-size of one machine under no other load)

	The stuff you’re going to call isn’t going to destroy machines if it’s killed abruptly at the end of the application’s life.

This is probably not appropriate for your project if:

	You’re already using or likely will be using a fleshed-out concurrency framework.

	You have many things you’d like to repeatedly schedule and run.

	Your callables absolutely must execute some cleanup code to avoid disaster on kill.

This is not a library intended for top-level program composition.

Installation:

pip install recurring

Usage:

import recurring

def stuff():
 # do stuff ...

seconds_between_stuff = 30

job = recurring.job(stuff, seconds_between_stuff)
job.start()

...

seconds_between_stuff = 300000000 # this will be *from when rate is set*, not *from the next scheduled call*
job.rate = seconds_between_stuff

...

stop making calls until start() is called again
job.stop()

some time later
job.start()

stop making calls permanently
job.terminate()
job.start() # raises RuntimeError
job.rate = 3000 # raises RuntimeError

recurring

	recurring package
	Module contents

recurring package

Module contents

Simple library for running a callable every N seconds

job(callable, seconds) will call callable every seconds seconds in a dedicated thread that is destroyed on program exit, or on calling job.terminate.

Attempting to start or modify the rate of a job that has been terminated will raise a RuntimeError

Example

import recurring
j = recurring.job(some_callable, some_seconds)
j.start()
…
j.rate = some_new_seconds
…
j.stop()
…
j.start()
…
j.terminate()

	
class recurring.job(func: Callable, rate: int) → None

	Bases: object

A job is something that is called repeatedly and the time to wait in between calls.

	
rate

	int – seconds in between calls

	
start() → None

	Start calling our regularly-scheduled function

	
stop() → None

	Don’t make any more calls until further notice

	
terminate() → None

	Permanently stop making any more calls

After this method has been called, attempts to start or change the rate of this job will raise a RuntimeError

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Recurring

