recurring Documentation
Release 1.0.0

Jeremiah Dodds

May 24, 2018

Contents

Use this if 3
This is probably not appropriate for your project if: 5
Usage: 7
Changelog 9
4.1 1.0.1-2018-05-24 .« . . . e e e 9

Indices and tables 11

recurring Documentation, Release 1.0.0

This is a simple library for running a function or callable every N seconds. It’s meant for applications that need
to schedule small, self-contined callable(s) on a relatively long, potentially changing period . alive-checks, state
snapshots, that sort of thing.

Contents 1

https://travis-ci.org/jdodds/recurring
https://coveralls.io/github/jdodds/recurring?branch=master

recurring Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Use this if:

You want to call something periodically over the lifetime of your application.
You want to be able to change the time between calls.

You want or need to avoid the overhead of joining and starting a thread every time. (up to 1/5 of a second
according to my sample-size of one machine under no other load)

The stuff you’re going to call isn’t going to destroy machines if it’s killed abruptly at the end of the application’s
life.

recurring Documentation, Release 1.0.0

4 Chapter 1. Use this if:

CHAPTER 2

This is probably not appropriate for your project if:

* You’re already using or likely will be using a fleshed-out concurrency framework.
* You have many things you’d like to repeatedly schedule and run.
* Your callables absolutely must execute some cleanup code to avoid disaster on kill.

This is not a library intended for top-level program composition.

recurring Documentation, Release 1.0.0

6 Chapter 2. This is probably not appropriate for your project if:

CHAPTER 3

Usage:

import recurring
def stuff():

do stuff ...
seconds_between_stuff = 30
job = recurring.job (stuff, seconds_between_stuff)
job.start ()
#
seconds_between_stuff = 300000000 # this will be xfrom when rate is setx, not xfrom_
—the next scheduled callx
job.rate = seconds_between_stuff
#

blocks until runner thread is dead, only upto timeout seconds if given. runner is a_
—daemon thread under the heed

and will get killed when the rest of the process dies regardless.

job.stop (optionally_some_timeout)

recurring Documentation, Release 1.0.0

8 Chapter 3. Usage:

CHAPTER 4

Changelog

4.1 1.0.1 - 2018-05-24

 Corrected an assumption about the number of events that could be queued at once. ## 1.0.0 - 2018-05-22

e Initial release

recurring Documentation, Release 1.0.0

10 Chapter 4. Changelog

CHAPTER B

Indices and tables

* genindex
* modindex

e search

11

	Use this if:
	This is probably not appropriate for your project if:
	Usage:
	Changelog
	1.0.1 - 2018-05-24

	Indices and tables

