
recurring Documentation
Release 1.0.0

Jeremiah Dodds

May 24, 2018

Contents

1 Use this if: 3

2 This is probably not appropriate for your project if: 5

3 Usage: 7

4 Changelog 9
4.1 1.0.1 - 2018-05-24 . 9

5 Indices and tables 11

i

ii

recurring Documentation, Release 1.0.0

This is a simple library for running a function or callable every N seconds. It’s meant for applications that need
to schedule small, self-contined callable(s) on a relatively long, potentially changing period . alive-checks, state
snapshots, that sort of thing.

Contents 1

https://travis-ci.org/jdodds/recurring
https://coveralls.io/github/jdodds/recurring?branch=master

recurring Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Use this if:

• You want to call something periodically over the lifetime of your application.

• You want to be able to change the time between calls.

• You want or need to avoid the overhead of joining and starting a thread every time. (up to 1/5 of a second
according to my sample-size of one machine under no other load)

• The stuff you’re going to call isn’t going to destroy machines if it’s killed abruptly at the end of the application’s
life.

3

recurring Documentation, Release 1.0.0

4 Chapter 1. Use this if:

CHAPTER 2

This is probably not appropriate for your project if:

• You’re already using or likely will be using a fleshed-out concurrency framework.

• You have many things you’d like to repeatedly schedule and run.

• Your callables absolutely must execute some cleanup code to avoid disaster on kill.

This is not a library intended for top-level program composition.

5

recurring Documentation, Release 1.0.0

6 Chapter 2. This is probably not appropriate for your project if:

CHAPTER 3

Usage:

import recurring

def stuff():
do stuff ...

seconds_between_stuff = 30

job = recurring.job(stuff, seconds_between_stuff)
job.start()

...

seconds_between_stuff = 300000000 # this will be *from when rate is set*, not *from
→˓the next scheduled call*
job.rate = seconds_between_stuff

...

blocks until runner thread is dead, only upto timeout seconds if given. runner is a
→˓daemon thread under the heed
and will get killed when the rest of the process dies regardless.
job.stop(optionally_some_timeout)

7

recurring Documentation, Release 1.0.0

8 Chapter 3. Usage:

CHAPTER 4

Changelog

4.1 1.0.1 - 2018-05-24

• Corrected an assumption about the number of events that could be queued at once. ## 1.0.0 - 2018-05-22

• Initial release

9

recurring Documentation, Release 1.0.0

10 Chapter 4. Changelog

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

11

	Use this if:
	This is probably not appropriate for your project if:
	Usage:
	Changelog
	1.0.1 - 2018-05-24

	Indices and tables

